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Continuous-Time and Discrete Multivariable
1DOF Controllers

Marek Kubalcik, Vladimir Bobal

Abstract— The paper is focused on a design and implementation
of a 1DOF (one degree of freedom) multivariable controller. The
controller was designed in both discrete and continuous-time
versions. The control algorithm is based on polynomial theory and
pole — placement. The controller integrates an on — line identification
of an ARX model of a controlled system and a control synthesis on
the basis of the identified parameters. The model parameters are
recursively estimated using the recursive least squares method.

Keywords— multivariable control, control algorithms, adaptive

control, polynomial methods, pole assignment, recursive
identification.
I. INTRODUCTION
YPICAL  technological  processes  require  the

Tsimultaneous control of several variables related to one
system. Each input may influence all system outputs. The
design of a controller for such a system must be quite
sophisticated if the system is to be controlled adequately.
There are many different methods of controlling MIMO (multi
input — multi output) systems [1]. Several of these use
decentralized PID controllers [2], others apply single input-
single-output (SISO) methods extended to cover multiple
inputs [3]. The classical approach to the control of multi-
input-multi-output (MIMO) systems is based on the design of
a matrix controller to control all system outputs at one time.
The basic advantage of this approach is its ability to achieve
optimal control performance because the controller can use all
the available information about the controlled system.
Controllers are based on various approaches and various
mathematical models of controlled processes. A standard
technique for MIMO control systems uses polynomial methods
[4], [5], [6], [7], [8] and is also used in this paper. Controller
synthesis is reduced to the solution of linear Diophantine
equations [9].

One controller, which enables control of TITO (two input-
two output) systems, is presented. The proposed control
algorithm is based on the 1DOF (one degree of freedom)
configuration [10]. The controller was realized both in discrete
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and continuous-time versions. Both versions of the controller
were realized both with fixed parameters and as self-tuning
controllers [11], [12] with recursive identification of a model
of the controlled system. The recursive least squares method is
used in the identification part.

Il. MATHEMATICAL MODEL OF THE CONTROLLED PROCESS

A general transfer matrix of a two-input-two-output system
with significant cross-coupling between the control loops is
expressed as (for continuous-time systems q = s as the
derivative operator and for discrete systems q = z* as the delay
operator)

[Gula) Gy(a)
-l oo @
Y (a)=G(aM(a) )

where U(q) and Y(q) are vectors of the manipulated
variables) and the controlled variables, respectively.

Y(a)=[y.(a). > (@) U(a)=[u,(a) u,(@)] 3)

It may be assumed that the transfer matrix can be
transcribed to the following form of the matrix fraction:

G(a)=A"(q)B(a)=B,(a)A*(a) )

where the polynomial matrices AecR,[q] BeR,,[q]
represent the left coprime factorization of matrix G(q) and the
matrices A, € R,,[q] B, € R,,[q] represent the right coprime
factorization of G(q). The further described algorithms are

based on a model with polynomials of second order. This
model proved to be effective for control of several TITO
laboratory processes [13], where controllers based on a model
with polynomials of the first order failed.

A. Discrete Model

Polynomial matrices of the discrete model are given by
following exressions

( ,1) l+azt'+a,z? a;z'+az?
A= azt+a;z? l+a,zt+a,z?’ ©)
5 6 7 8
B(z’l)z bzt +b,z? biz'+bz? ©)
bzt +b,z? bzt +bz?
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The matrices can be converted to difference equations

yl(k): _alyl(k _1)_ azYl(k - 2)_ ang(k _1)_ aAYz(k - 2)+ (7)
+ by, (k —1)+ byu, (k — 2)+byu, (k —1)+b,u,(k - 2)
Y2(k)= a5y, (k —1) - agyy(k —2) - a;y,(k —1)—agy,(k —2) + (8)

+byuy (k —1)+byu, (k —2)+ bu, (k —1) + byu, (k - 2)

B. Continuous-Time Model

Polynomial matrices of the continuous-time model are
defined as follows

s’+a,5+a a,s+a

A(s){ oL } (9)
a;s+a, s°+a,S+a,

B(s)= b,s+b, bys+b, (10)
b,s+b, b,s+b

Differential equations describing dynamical behavior of the
system are

Y +ay] +ay, +ay; +a,y, =buy +bu, +buj +b,u, (11)

yél +a5y1/ +a6y1 +a7y£ +a8y2 :b5u1/ +b6u1 +b7u£ +b8u2 (12)

I1l. DESIGN OF 1DOF CONTROLLERS

The 1DOF configuration of the closed loop system is
depicted in Fig. 1.

Fig. 1 Block diagram of 1DOF configuration

The controller can be described both by left and right matrix
fractions as well as the controlled system

G (a)=P*(a)Q(a)=Q.(a)P; *(a)

QeRx[q], QieRx[q],

(13)

Where PeRy[q],
polynomial matrices.
The vector of input reference signals is defined as

W(a)=F, (a)h(a)

Further, the reference signals are considered as step
functions. In this case h(q) is a vector of constants and F,(q) is
in the case of the discrete system expressed as

P.eRy[q] are

(14)

1-z7* 0
Fz7)= 15
Jz7) [ . 1_21} (15)
and in the case of the continuous-time system as
s 0
F.(s)= 16
u(s) {0 J (16)
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The compensator F(q) is a component formally separated

from the controller. It has to be included in the controller to
fulfil the requirement on the asymptotic tracking. If the
reference signals are step functions, then F(g) is an

integrator.
The control law (operator g will be omitted from some
operations for the purpose of simplification) is defined as

U=F"'QP'E @17

where E is a vector of control errors. Using matrix operations
it is possible to modify this vector to the form

E=W -Y = FP/(AFP, + BQ,) ' AW (18)

Asymptotic tracking of the reference signals is then fulfilled
if FP, is divisible by F,,.

It is possible to derive the following equation for the system
output

Y = A'BF'P'QE = A'BF P QW -Y) (19)
which can be modified to
Y =P,(AFP+BQ, ) 'BQP'W (20)

The determinant of the matrix in the denominator (AFP,+BQ);)
is the characteristic polynomial of the MIMO system. The
roots of this polynomial matrix determine the behaviour of the
closed loop system. They must be inside the unit circle (of the
Gauss complex plane) in case of the discrete system and on the
left side of the Gauss complex plain in case of the continuous-
time system for the system to be stable. Conditions of BIBO
stability can be defined by the following Diophantine matrix
equation:

AFP, +BQ =M (21)

where M e R,,[q] is a stable diagonal polynomial matrix. If

the system has the same number of inputs and outputs, matrix
M can be chosen as diagonal, which allows easier computation
of the controller parameters. Correct pole placement of the
matrix M is very important for good control performance.

For the continuous-time case the matrix M takes the following
form

s*+ms® +
0
2
+m,S° +m,s+m
M(S): 2 : " 3 2 (22)
0 S"+mgs® +mgSs” +
+m,s+m,
and for the discrete system it takes the form
1+mzt+m,z7? + 0
M(Z—l)z +m,z° +m,z™* 23)
2

1+mzt+m,z7% +
0 1 2

-3 -4
+myz7% +m,z
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A. Design of Discrete Controller

The degree of the controller polynomial matrices depends
on the internal properness of the closed loop. The structures of
matrices P; and Q; were chosen so that the number of
unknown controller parameters equals the number of algebraic
equations resulting from the solution of the Diophantine
equation (21) using the method of uncertain coefficients:

-1 -1
Pl(zl)z{“ Pz P2 1} (24)
P,z 1+ p,z”
. O +0,2 ' +0:2° O, +02 " +0Qe2 2
Ql(z 1)= Pt P 3 4705 6 (25)
Gy + 02 ' +0eZ 7 Oy +GyyZ " +0pp2 2

The solution of the Diophantine equation results in a set of
algebraic equations with unknown controller parameters.

[ -a, -a, 0 0 b, 0 0 b p] [ m ]
a,-a, a,-a, 0 b, b, 0 b, by|p; m, +a,
a, -1 a, b, b 0 b, b, O0fq m,—a,+a,
1 0 bb 0 0 b, 0 O0jfqg,| | m-a+l (26)
-a, -a 0 0 b, 0 0 byfag| 0
a;—a; 3 —-a, 0 by b, 0 by b,|aq, ag
a, a,-1 b by 0 by, b, 0]aq, a; —a,
. 0 1 b, 0 0 b, 0 0jq| | -—a
[ —a, -a, 0 0 b, 0 0 bp] [ 0 i
aH-8 -8 0 bz b1 0 bA bs Py 3
a-1 3, bz b1 0 b4 b3 0 Us 8~ 8y (27)
1 0 b, 0 0 by 0O O0fqs|_ —a,
-a, -3 0 0 b, 0 0 hbfg| m,
ag—a; a—a, 0 by by 0O by b fa, m, +m,
as a,-1 by by 0 by b, 0}aqy m,—a, +a,
| 0 1 by 0 0 b, 0 0fq,| | m-a+1 |

The controller parameters are obtained by solving these
equations. The parameters are then used for computation of the
control law. The control law is defined by the following
difference equations:

(k) (1 Py pA)J (k 1) (pl + Pa + P2 P3Py pA)“Il(k _2)"'

(pl P, p3)“1(k 3)+q1e1( ) (qz + p4Q1'p3Q4)el(k _1)"'
( + P402P30s )el(k - 2) (p4Q3'p3QG )el(k _3)+ 4.€; (k)+
(05 + Py0s-P, 0 e (k—1)+ (a5 + p.0s-P,, Je, (k —2)
(P0sP20s Je, (k —3)

(k)= (PP 1, (k= 1)+ (P, + Py + P, PPy P (k= 2) +
(pl P4P2P; )Jz(k _3)+ Q7e1(k)+ (qs + P4077Psb0 )el(k _1)+
(dg + P40l P 0l s (K —2)+(PyUg Pl Jos (K —3)+ g, (K)+
(qn + P10107P20; )ez (k 1) (q12 + P10117P20s )ez (k _2)
(PyGP- 0 Je, (k —3)

+
+
+ (28)

(=

+ + + +

(29)

B. Design of Continuous-Time Controller

Polynomial matrices of the continuous-time controller are as
follows:
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S+ P, P,

1) { P; S+ pj
s®+q,5+ s?+0.5+

Ql(s){ql St 48T %j| 1)
0,5" +QgS+0Qy QyS” +0;3,5+0Qy,

The solution of the Diophantine equation results in a set of
algebraic equations with unknown controller parameters.
Using matrix notation, the algebraic equations are expressed in
the following form.

1 0 b 0 0 b 0 Ofp m, —a,
a a b, b 0 b, b 0fnp, m, —a,
a, a, 0 b, b 0 b, biaq, m,
0 0 0 0 bb 0O O b,|aq, m,
0 1 b 0 00b 0 0|qg| | -a |©
a, a, b, by 0 b, b 0]gq, —-a,
a, a 0 b, b 0 b biaq, 0
10 0 0 0 by O O bfg| | 0 |
[1 0 b, 0 0 b, 0 Ofp,| [ —-a, |
a a, b, bp 0 b b, Ofnp, -3,
a, a 0 b, b 0 b, b |aq, 0
0 0 0 0 b, O O b,|aq _ 0 (33)
0 1 b O O Db O O0fgq, m —a,
a, a, bp b 0 b, b, 0]aq, m, —a,
a, a4 0 b, b, 0 b, b |q, m,
10 0 0 0 b, O O bjqg,| | m |

The control law is defined by the differential equations
R (RS VRS (R T
! +(00Ps +020, P )] +(A2P, +0505 P Jel +

=0,6, (34)
+(a4 p, +05-0, P,

+(0sPaGs Ps Jey ++0,€5
+(0s Py + -0, P, )65 + (0 P15 P, e,

+(PyPap, sy =

=80 +(a; Py +Ug-Cuo Ps J6; +(0s Pu +0oClis Py JoI +
+(q8 Py +0g-011 Ps )91 ++0085 +(q10 P, +0;,-0; P, )eg
+ (011 Py + TG P )5 +(0ly Py + i~ P, e,

For purposes of simulation, the controller was realized in
the Matlab/Simulink environment as an S-function. It was then
necessary to obtain its state equations. Further there it is
introduced a conversion of the first differential equation (34)
to the state equations. The second differential equation (35)
was converted similarly. Equation (34) can be itemized as
follows

+(p, + Py

(35)

370
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U{'A +(p1 + Py l”A +(p1 P4-P, ps)‘JiA =
+(0y s + 070, s )y +(0, Py +03-05 D3 e
+(0s P4-Gs P3 )y

4

=0,6 + (36)

ufe +(py+ Py ufs +(PyPyP,Ps s =
=q,ey +(a,p,+0s-0,p, )85 +(ds Py +06-0, P, S
+(0s P10 P Je,

Equation (36) can be transcribed to the transfer function. It
is also possible to establish an auxiliary variable Z

+ (37)

()= 98"+ (0Pe G 0Py )5° + (0, Py + — s )5 + (s —Gos)

G
53 +(P1 + p4)Sz + (p1p4 - P pa)s (38)
— 1A£

"7 E

Yin
E

A

By means of the variable Z it is possible to define following
equations

qlzm+(q1 p4 +Q2'Q4 p3 )Z”+(Q2 p4 +Q3'q5 p3 )Z""

(39)
+(Q3 P4-06 P )Z =Ujp

Zm+(p1+ p4)2”+(p1p4_p2p3)2,=e1 (40)

Equation (40) can be converted to a set of differential
equations of the first order (state equations). Choice of the
state variables is as follows

X, =12
X, =1 (41)
X3 — Z/!

And the state equations are

X =X,

Xy = X3 (42)

X; =€ _(pl + p4)X3 _(p1p4 - P ps)Xz

On the basis of the state variables, which are substituted to
equation (39), it is possible to derive the first part of the
manipulated variable uja
Uip = (& = (P PP = (PuPa = 2P o)+ (G + 0P P + 43y
+ (QZ P4+ 03705 Ps )Xz + (Q3 P40 Ps )X1

Similarly it is possible to transcribe equation (37)

02" + (0 P, + G50, P, )2 + (0ls Py + 001, P, )2 +

(44)
+ (qe P-ds P, )Z =Ug

Zm"'(pl"' p4)Z”+(p1p4_ pzpa)z,:ez (45)

State variables were chosen as in the previous case (41).
The state equations are as follows

X =X,
Xz = X (46)
X; =8, _(pl + p4)X3 _(p1p4 -p; ps)xz
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The second part of the manipulated variable u;g can be
computed similarly like the part uj, by substitution of the state
variables to equation (44)

Ug = qA(ez _(pl + p4)X3 _(p1 Ps— P2 ps)xz)"' (q4 Py +0s-0y pz)xs

(@47
+ (Q5 P, + 060, P, )Xz + (qe Pi-03 P, )X1

The manipulated variable u; is then defined by the following
sum

Uy = U, +Upg (48)

An expression for computation of the manipulated variable
U, is obtained similarly on the basis of differential equation
(35).

IV. SYSTEM IDENTIFICATION

The control algorithm was applied as a self-tuning
controller. Self-tuning control is based on the online
identification of a model of a controlled process. Each self —
tuning controller consists of an on — line identification part and
a control part.

Various discrete linear models are used to describe dynamic
behaviour of controlled systems; see for example the overview
in [14]. The most widely applied linear dynamic model is the
ARX model. Usually the ARX model is tested first and more
complex model structures are only examined if it does not
perform satisfactorily. However, the ARX model matches the
structure of many real processes. The parameters can be easily
estimated by a linear least-squares technique.

A. Identification of Discrete Model

The ARX model describing the TITO process is defined as

(k) =@,k plk ~1)+ e, (k)
Ya(k) =0, (kplk ~1)+e, (k)

where e (K), es(k) are non-measurable disturbances.
Parameter vectors are specified as follows:

(49)

01" (k)=[a1,85,a5,84,by,b5,b5,b,] (50)

0," (k)=[as,a5,a7,a4,b5,b,b7,bg ]
The data vector is

¢’ (k _1): [Y1(k _1)73’1 (k - 2),y2 (k _1)v
Y, (k - 2)1 ul(k _1)1 U, (k - 2)1“2 (k _1)’u2 (k - 2)]

The aim of the identification is a recursive estimation of
unknown model parameters @ on the basis of the inputs and
the outputs considering the time moment k t,, {y(i), u(i), i =k,
k -1, k-2, .. ko (where kg is an initial time of the
identification). We are looking for a vector 2] minimizing the
criterion

(51)

ak(«a):ge:(i) (52)

0



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

where

=30 s)-b o' ]

When using the least squares method, the influence of all
measured input and output samples to the parameter estimates
is the same. This is inconvenient for the identification of
nonlinear systems, where changes in the identified parameters
are expected. Tracking of changes of the parameters can be
achieved using exponential forgetting. This technique ensues
from the assumption that new data describe the dynamics of an
object better than older data, which are multiplied by smaller
weighting coefficients. However, if the identified plant is
insufficiently activated, the input and output signals are steady
(this situation is typical for closed control systems), and the
exponential forgetting factor can cause numerical instability of
the identification algorithm. A possible solution of this
problem is the application of adaptive directional forgetting
[15]. This technique changes the forgetting factor according to
the level of information in the data. In view of the parameter
changes in the nonlinear coupled-drives apparatus and the
expected insufficient activation of the controlled system, the
recursive least squares method with adaptive directional
forgetting was applied. Then we minimize a modified criterion

o)

(53)

Iy (@) = (54)

-

Il
=

0

where 0(p” <lis the exponential forgetting factor.

The vector of parameters is updated according to the
following recursive expression

6(k)=6(k _1)+%)f(1‘131) (k1) (55)
Where

£k -1)=¢"(k-1)C(k-L)g(k -1) (56)
is an auxiliary scalar and

&k —1)=y(k)-6" (k-1)p(k -1) (57)

is a prediction error. If &(k—1)>0, then the square

covariance matrix C is updated according to following
expression

C(k -1k —1)p" (k —1)C(k -2)

C(k)=C(k-1)- 1K) 2D (58)
Where

o= oft)- 24 )
If £(k—1)=0then

C(k)=C(k-1) (60)
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The directional forgetting factor is computed in each
sampling period according to the expression

bt A ] 0
Where

k- ”
(k)= p(k f(o(k —1)+1] )
A(k)zq)(k){ﬂ(k_m%} (64)

are auxiliary variables.

B. Identification of Continuous-Time Model

It is not possible to measure directly input and output
derivatives of a system in case of continuous — time control
loop. One of the possible approaches to this problem is
establishing of filters and filtered variables to substitute the
primary variables. This approach is described in detail in [16],
[17], [18]. The filtered variables are then used in the recursive
identification procedure.

Let us consider a linear continuous — time ARX model in a
form of differential equation

Alo)y(t)=B(o(t)+n(t)

where n(t) is a random continuous — time variable and o is
the derivative operator. After the Laplace transform we obtain

A(s)Y (s)=B(s(s)+N(s)+0;(s) (66)

where the polynomial O, represents the Laplace transform
of initial conditions. The output of the system is than given as

S s) Ols
Y(s)= By (s)+ NE), A((S))

A(s) A(s)

In order to obtain approximations of derivatives of the
continuous — time variables it is necessary to establish filters
using differential equations

Clo t)=u®; Cclo)y,t)=y(t)

where C(o) is a stable polynomial and us s a filtered input

and ys is a filtered output. After the Laplace transform we
obtain

C(s;(5)=U(s)+0,(s); Cls)¥;(s)=Y(s)+Oy(s)

where Oy(s) is a polynomial of initial conditions for the
filtered input and O3(s) is a polynomial of initial conditions for
the filtered output. The degree of the polynomial ¢ must be
greater or equal to the degree of the polynomial A (deg C(s)>
deg A(s)). It is profitable to choose deg C(s) = deg A(s) (the
lower is the degree of the polynomial C, the faster is the
dynamics of the filter). Time constants of the filters must be

(65)

(67)

(68)

(69)
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lower than time constants of the plant. A right choice of the
filter’s constants makes convergence of the parameters faster.

After substitution of the filtered variables to the equation
(66) we obtain

Alcy, (s)-0,|=B|cu, -0, |+ N(s)+0, (70)
After modification and substitution

AY, (5)=BU, (5)+ 0O, - BO, +CAO3 +N(s) 1)
and substitution

o- 0O, -BO, + AQ, (72)

C
we obtain
B O 1 B

Y, (s):XU,(s)+Z+XN(s) = Gf(s):Z:G(s) (73)

Expression (73) proves that the transfer behaviour between
the filtered and between the non — filtered variables is
equivalent. Different are only initial conditions for the filtered
and original variables. This fact enables to employ the filtered
variables for the model parameter estimation.

After transformation to the time domain we obtain the
following equation

Aoy (t)=B8(v) u; (t)+n(t)

The filtered variables are taken in discrete time intervals tk
= kTs, k =0,1,2, ..., where Ts is the sampling period. The
equation (74) can be modified to the form suitable for the
model parameters estimation

8, y(fi)(tk )+iju(fj)(tk )"‘ n(tk)
=0

(74)

n-1 (75)

i=0

The parameters of the model are estimated by the recursive
method described in the previous section according to
expressions (55) - (64). For the considered continuous — time
model given by expressions (9) - (12) the equation (75) takes
following form

Vit (tk):_alylrf ( )_ a, Yyt ( )_ a3y (tk)_ a, Yo (tk)+ (76)
+byuy (tk )+ b,u, (t ( )+ byu;  (t ( )"‘ b,u, (tk )"‘ 51(tk)

Yo (tk ):*asy{f (tk)* Ag Y1y (tk)7a7yéf (tk )* agYa¢ (tk)+ (77)
+Dbsuy, (tk )+ bsuy ¢ (tk )+ b,u; (tk )+ DU, ¢ (tk )+ gz(tk)

The regression vector and the vector of parameters are

¢1,zT (tk ): [y (tk )'_ylf (tk )'_yéf (tk )v_Y2f (tk )’ (78)
—Uy; (tk )!_ulf (tk )’_U;f (tk )’_sz (tk ),l]

@1T (tk)=[a1'a2'a3’a4’bl’b2’b3'b4’dl] (79)
QzT (tk): [asvae!a7vasvbsvbe!b7lbsldz] (80)
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Considering the order of the system, the filters for both
variables were chosen to have second order.
Vit (t)+ C Vit (t)"‘ (YT (t) = yl(t)
Y (t>+clyéf ( )+Coy2f (t): Y2(t)
7 () + e (£) + couy (t) = us (1)
ug (t)+ cyup; (£)+ Cou (t) = u, (t)
A right choice of the coefficients of the filter’s polynomials
and choice of the sampling period are the ruling factors for the

speed of the parameter’s convergence. Time constants of the
filters must be lower than time constants of the plant.

(81)

V. SIMULATION VERIFICATION

The proposed controllers were verified by simulation.
Verification by simulation was carried out on a range of plants
with various dynamics.

A. Simulation of Discrete Control

As a simulation example for the discrete controller it is
shown control of a system which represents a linear model of a
coupled drives process obtained by the recursive identification
for a particular steady state [13].

-1 -2
—0.0220z7 +0.1797z (82)
1-0.4564z7" —0.08302 2

0.1484z71+0.2197272 | (83)
-0.0371z71 -0.34892 2

A(Z ,1)_ 1-0.5827z7" +0.1745z27
0.0167z " —0.08862

B(z’l)z —0.0035z7" +0.0955z2 2
0.2783z7% +0.3107272

The step response of the system is in Fig. 2.

Step Response

From: In(1) From: In(2)

Ta: Cute1)

Amplitude

T Cut(2)

1] 2 4 [ g 100 2 4 [ g 10
Time (zec)

Fig. 2 Step response of the discrete system

The tuning parameter is the matrix M. A suitable pole-
placement (matrix M) was chosen experimentally. At first, a
multiple pole was chosen on the real axis. A suitable position
of the multiple pole was chosen by experiments and
comparison of control results. Then it was searched a suitable
combination of various poles in the neighbourhood of the
multiple pole.
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M(Z,l): +0.0001z°°

[1-072+0.0127 -
-0.1z7%-0.05z27" + 0

1-0.7271+0.01z72 -
-0.1z7%-0.0527" +
+0.0001z°°

(84)

The time responses of the control are shown in Fig. 3-4

1 1 1
100 120 140

1
160

1
180 200

=1 100 120 140
k

160

120 200

Fig. 3 Adaptive control with discrete controller
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Fig. 4 Adaptive control with discrete controller-manipulated

variables

B. Simulation of Continuous-Time Control

A continuous-time model in the form of the matrix fraction
obtained by a possible conversion of the discrete model does
not need to have the structure on which it is based the
computation of the control law. The model obtained by this
way would by then unusable.

It is shown control of the following continuous-time system

ISSN: 1998-0140
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AlS)= {s +25+0,7
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s? +25+0,7

0,2s+0,4
-0,55s-0.1

(S): {0,55+0,2 0,ls+0,3} (86)

05s+01 0,3s+0,4

Fig. 5 shows the plant‘s step response

M(s)= +10s2? +55+1

Step Response

From: InC1) From: Inf21

Ta: D)
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Ter Out(2)

12 0 2 4 B 8 10 12
Time (s&c)

Fig. 5 Step response of the continuous-time system

o 2 4 G 8 10

The matrix M was obtained as follows
s® +5s* +10s° + 0

87

s® +5s% +10s° + (&7)

0
+10s2 +55+1

The time responses of the control are shown in Fig. 6-7.
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Fig. 6 Adaptive control with continuous-time controller
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Fig. 7 Adaptive control with continuous-time controller-
manipulated variables

From the courses of the variables in Fig.4-7 it is obvious
that the basic requirements on control were satisfied. The
system was stabilized and the asymptotic tracking of the
reference signals was achieved.

VI. CONCLUSION

The 1DOF TITO controller was designed and implemented
both in discrete and continuous-time versions. General
principles were elaborated on a specific system with two inputs
and two outputs that is often applicable in industrial practice.
Control law based on specific model was derived in the form
of self-contained expressions that is especially useful for
practical applications of control on common industrial devices.
An advantage of the proposed strategy lies in its simplicity and
applicability.

It is necessary to recognize that self-tuning controllers do
not work satisfactorily in the initial adaptation phase if the
initial parameter estimates are chosen without a priori
information. However, the most important property for
practical use of self-tuning controllers is their performance
after the adaptation phase.
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